
Abstract

The contribution proposes efficient computational strategies for large scale numeri-
cal simulations of the shield tunnelling process using the finite element method. In the
simulation, the ground, the tunnel lining, the shield machine, and the support measures
are modelled as distinct components. Their interactions are accounted for by means
of contact conditions and other constraints. The material model of the soil considers
the soil skeleton, pore water and air as separate material phases. The numerical char-
acteristics of the presented model imposes particular challenges on the solvers used to
solve the linearised system equations. The coefficient matrices lack some properties
that are vital to many iterative solvers, such as positive definiteness, symmetry, and
low condition numbers.

To reduce computing times, several parallelisation techniques have been investi-
gated. A parallelisation concept for distributed memory computers by means of the
Trilinos libraries is presented as well as an openCL-based implementation for GPGPU
systems using the ViennaCL framework. A comparative study reviews the parallel ef-
ficiency of different linear solvers and assembling procedures for the finite element
model with respect to both speedup and applicability for the simulation of highly de-
manding numerical models in geotechnics and tunnelling.

In order to handle the spatial search involved in the solution of contact conditions,
the standard domain decomposition scheme has been adopted. An additional, dedi-
cated contact domain is specified that contains all nodes in the contact surfaces. A
two-staged decomposition allows for dissimilar decompositions for the assembling
and the solving phase. Thus, arbitrary linear solvers can be applied regardless of the
partition method used to decompose the model for the assembling process.

Keywords: distributed memory, GPGPU, parallelisation, simulation, finite element
method, tunnelling

1



1 Introduction

Mechanised tunnelling is the most wide-spread tunnelling method today. Its flexibility
allows to construct tunnels in various conditions including difficult ground conditions
as well as tunnels in vulnerable urban areas, often characterised by low overburden
and sensitive existing buildings. The tunnelling process, however, is associated with
considerably high risks. In particular, changing and unforeseen ground conditions
may require to adapt the original design and to react in a suitable manner with a
readjustment of process parameters. Furthermore, surface settlements induced by the
tunnelling process may lead to damage of existing infrastructure and buildings in the
vicinity of the tunnel.

Numerical simulations can provide valuable insight in the behaviour and the inter-
actions of the excavation process and its environment. These simulations, however, are
characterised by complex and large numerical models that are expensive to compute
and may have to be run multiple times in order to study different design or condi-
tion variants. For this reason, it is inevitably important to minimise the computational
effort and the time needed to run such simulations.

Parallelisation of the simulation software is a prerequisite to achieve the goal of
providing accurate predictions of a complex construction process in reasonably short
computation times. In this contribution parallelisation concepts and their implementa-
tion in a recently developed numerical simulation software for the mechanised shield
tunnelling process [1] are presented. Particular focus is put on the measures taken to
overcome problems in the parallel efficiency and in the parallelisation strategy as such
in view of the specific features of the computational model.

2 Simulation model for shield tunnelling

The mechanised shield tunnelling process is characterised by a continuous support of
the excavated ground by means of a steel shield. Within the shelter of this shield,
the ground is excavated by means of a revolving cutting wheel and the tunnel lin-
ing is constructed from precast concrete segments. By this, the excavated tunnel is
sealed against inflowing water and ground material at any time during the complete
construction process. At the heading face, the ground needs to be supported by ap-
propriate measures to prevent failure and, hence, uncontrolled inflow of the material.
This is usually realised by means of a bentonite support liquid (hydro shield) or by
a pressurised muck that consists of the excavated material (earth pressure balanced
shield). The construction follows a repeated sequential order where, in the excavation
phase, the shield is pushed forward by means of hydraulic jacks that are mounted on
the shield and use the recently completed ring of lining segments as counter bearing.
After the length of one lining ring has been excavated, the machine is stopped and the
hydraulic jacks are retracted to allow for the erection of the next lining ring. The gap
that arises between the ground and the lining tube is grouted with mortar to ensure the
bedding of the lining and to prevent settlements.

2



Figure 1: Components of the simulation model for shield tunnelling: a) ground model;
b) excavation volume; c) shield model; d) segmented lining; e) tail gap grouting; f)
complete discretised model

The numerical model for the simulation of the shield tunnelling process allows for
a transient, process-oriented simulation of all relevant components of the excavation,
the lining installation and process-related impacts on the environment. The shield ma-
chine is represented as a separate model component that is capable to move freely in
the ground. The model components and their interactions with each other are repre-
sented by various sub-models that are specifically designed to represent the system
behaviour of the tunnel construction process. These sub-models are: the shield ma-
chine, the surrounding ground, the segmented lining, the hydraulic thrust jacks, the
heading face support and the tail gap grouting (see Fig 1).

Each of these sub-models is characterised by specific features that are non-standard
in the context of the finite element method and that need to be addressed with respect
to parallelisation of the simulation software. The shield machine is modelled as a de-
formable body representing the main load bearing components of the shield and the
machinery. Its skin is in frictional contact with the surrounding soil. For this purpose
a surface-to-surface contact algorithm, based on a formulation presented in [2], is im-
plemented in the simulation software that allows to model also the flow of process
fluids (grouting mortar and support liquids) in the steering gap between the shield and
the ground [3]. This contact algorithm requires spatial search over the complete con-
tact domain in order to select points in opposing contact surfaces that can be linked
with each other. The ground model is characterised by a three phase formulation in the
framework of the theory of porous media [4] that considers water and air as separate
fluid phases in a porous, solid soil skeleton to model partially saturated ground condi-
tions. Here, the coupling of fluid and solid mechanics as well as the numerical prop-
erties of a nonlinear constitutive model for the soil skeleton impose severe challenges

3



to the linear solver used to solve the system equations. In particular, ill-conditioned,
non-symmetric matrices have to be considered. The segmented lining and the shield
machine are coupled by means of truss elements representing the hydraulic thrust
jacks. These truss elements are not connected to the nodes but to the faces of the re-
spective lining and shield elements. Therefore, a tying algorithm has been employed
that undergoes the same spatial search algorithm as the contact algorithm. For the
heading face support, either mechanical or pressure boundary conditions are applied
to model both slurry shields and EPB shields. To model an impermeable filter cake
that evolves during standstill of the machine in the lining construction phase and that
is destroyed in the excavation phase, these boundary conditions are applied in an al-
ternating way. Here, different permeabilities of the soil contribute ill-conditioning of
the system matrix. Finally, the excavation of the ground as well as the installation of
the lining and the tail void grouting are implemented by means of de- and reactivation
of elements during the simulation procedure. This fact has to be dealt with properly
also in the case of distributed memory parallelisation using domain decomposition
methods.

The simulation model is implemented in the object-oriented multi-physics finite
element framework KRATOS [5]. The aim of KRATOS is to allow for an easy, yet
efficient, implementation of arbitrary finite element formulations and algorithms for
the solution of coupled problems. For this purpose, all interfaces have been designed
such that internal data handling, including the communication processes required for
parallelisation, are encapsulated. Through this software design, it is possible to use
all features of KRATOS in arbitrary combinations without the need to implement the
same algorithms in different routines.

3 Parallelisation concept

For the parallelisation of the simulation software three different concepts have been
applied: shared memory parallelisation by means of the openMP framework, dis-
tributed memory parallelisation using MPI and domain decomposition methods, and
parallel solving on graphics processors (GPGPU) using the openCL interface. The ba-
sic idea of the parallelisation concept is to keep the basic implementation of the finite
element technology independent from the parallelisation method. Thus, an element, a
constitutive law or auxiliary algorithms such as time integration schemes or the con-
tact formulation only has to be implemented once and works in all parallel setups.
This requires, however, a number of specific measures in the design of the software
framework as well as in the parallelisation concept that are explained in the following.

3.1 Shared memory parallelisation

The parallelisation on shared memory computers follows a straight forward imple-
mentation scheme frequently used in applications that run on multi-core computers:

4



all loops that can be trivially parallelised are marked with a respective compiler direc-
tive (pragma) to allow for automatic parallelisation by openMP. In the case of the finite
element simulation software employed for the simulation of the shield tunnelling pro-
cess, this approach has been applied for the assembling of the system matrix and in the
linear solvers. During the assembling phase, all elemental contributions to the global
stiffness matrix and the load vector are computed element-wise in parallel, includ-
ing the computation of the material response and all contributions from the contact
and tying algorithms. By this, approximately half of the workload of the complete
program has been parallelised. The second large part of the overall workload is the
solution of the system of linear equations. Here, parallel linear solvers have been em-
ployed. Since on shared memory systems all stored variables are accessible by each
processor, no particular measures have to be taken to ensure the applicability of the
parallelisation to deactivated elements, spatial search algorithms or the setup of the
system. It has to be noted, though, that the allocation of memory follows the dis-
tribution of workload to the different processors in order to prevent communication
bottlenecks that arise from the ccNUMA architecture used in many shared memory
computers. This is achieved by partitioning the nodes container according to the num-
ber of processors used. This split container is then used to allocate the memory for the
global system equations. By this, each partition of the shared variables is allocated
in the local memory of a different processor. While the global system of equations is
assembled in course of the simulation, the memory access is then distributed among
all processors thus preventing the access by all processes to the local memory of one
single processor.

3.2 Distributed memory parallelisation

While the parallelisation concept for shield tunnelling simulations on shared mem-
ory computers has already been presented in [6], an extension for distributed memory
computers has been recently developed and is described in the following. On dis-
tributed memory computers, domain decomposition methods are applied to divide the
complete model into multiple parts of similar workload to be assigned to each proces-
sor. In this case each processor has access to its private subdomain only. To solve the
interface problem such that a valid solution for the complete domain is achieved, all
processors communicate by means of message passing. This renders the solution of
contact problems difficult, if bodies that are in contact are not in the same subdomain.
For this reason, all contact surfaces of the complete model are assigned to one partic-
ular subdomain. While the number of nodes in the two-dimensional contact surface
is small compared to the number of nodes of the three-dimensional simulation model,
this does not yield an imbalanced workload. A second issue to be addressed is the
handling of deactivated elements. The deactivation of elements is controlled by a flag
that determines whether an element contributes to the global system matrix. This flag
can be controlled independent from the domain decomposition.

All communication between the processes is carried out by means of communica-

5



tor objects that are inherently connected to each mesh entity (nodes, elements, condi-
tions). By this, the algorithmic implementations are identical for the shared memory
and the distributed memory versions of the software. Thus, no additional maintenance
effort needs to be taken to keep the software coherent. Since the model is decomposed
already in the initialisation phase, each processor is related to only one subdomain of
the complete model. During the assembling of the global system of equations, each
sub-model is assembled separately, but stored in a distributed data structure using the
Epetra library [7]. Epetra matrices are stored in a distributed manner, yet appear as a
monolithic data structure. All communication that is necessary to handle cross-process
access to these resources are encapsulated in the Epetra library such that no communi-
cation functions have to be directly implemented in the finite element code. A second
advantage of this approach is that the domain decomposition of the global stiffness
matrix may be independent of the decomposition of the mesh. As a consequence, for
both the assembling and the solving process, optimal domain decompositions can be
applied.

For the simulation of tunnelling problems, an iterative GMRES solver is applied
to solve the global interface problem in parallel. As a preconditioner to this iterative
solution, the matrices arising from the local sub-domains are treated with a block LU
decomposition solver (KLU, [8]).

3.3 GPGPU parallelisation

A more recent approach to exploit parallelism is to use general purpose graphics pro-
cessors (GPGPU). These processors are massively parallel and well suited for floating-
point computations. Wide-spread iterative linear solvers such as CG, BiCGStab or
GMRES repeatedly perform sparse matrix-vector products. This operation can be
conducted row-wise independently and is therefore applicable for massive paralleli-
sation on GPGPUs. By means of the generic programming interface openCL [9],
linear solvers and other parallel algorithms can be conveniently implemented to run
on graphics processors. In KRATOS, this has been realised employing the ViennaCL
library [10] that provides data types for sparse matrices and vectors as well as imple-
mentations of level 1 and 2 BLAS operations.

As can be seen from the benchmarks presented in Section 4, the performance of
the implemented preconditioned iterative solvers is good for basic structural prob-
lems. However, the challenging properties of the coefficient matrices arising from
shield tunnelling problems require specific preconditioners that are hard to implement
efficiently on GPGPU architectures due to their algorithmic formulation and mem-
ory requirements. In particular, the lack of heap allocation on runtime in the openCL
framework renders this a difficult task at present.

6



4 Benchmark applications

The performance of the GPGPU solvers is demonstrated by means of a benchmark
example related to a linear structural analysis in Subsection 4.1. Subsection 4.2
shows the effect of an optimised allocation strategy for ccNUMA architectures on
the speedup of the assembling process. To demonstrate the parallel performance of
the presented simulation software, an exemplary simulation of a tunnel excavation has
been computed using both the shared memory and the distributed memory version of
the software. The results are presented in Subsection 4.3.

4.1 Benchmark 1: Elastic analysis of a Cooling tower

As a simple benchmark structure, a cooling tower shell (see Fig. 2) has been analysed
using all parallelisation approaches available in KRATOS. A comparison of turnover
times for different linear solvers are illustrated in Fig. 3. Each of the investigated
solvers has been tested in its standard form and together with the application of an
in-matrix JACOBI-preconditioning (“Scaling Solver”). The results show that for struc-
tural problems the direct solver PARDISO [11] can clearly compete with the openCL
implementation of an iterative CG solver. Even the CPU-based CG solver is slower
for the considered problem.

Figure 2: Benchmark structure: a cooling tower shell under gravity load

For the distributed memory version, the cooling tower structure has been computed
using different numbers of processes on a computer cluster. Fig. 4 shows the speedup
and the final parallel efficiency that has been achieved for a model of 66000 degrees
of freedom. The linear solver used in this example is an iterative GMRES solver,
preconditioned by means of a block-wise application of the direct LU-decomposition
solver KLU.

7



734976 734976
Scaling solver

263088 263088
Scaling solver

0

200

400

600

800

1000

1200

1400

1600

SuperLU
Pardiso (4 threads)
CG
OpenCL CG
SuperLU Iterative

Degrees of freedom

S
o

lv
in

g
tim

e
[s

]

Figure 3: Turnover time of various linear solvers for the cooling tower benchmark in
different discretisations (The results exceeding by far a reasonable solving time are
indicated by arrows)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

sp
ee

du
p

pa
ra

lle
l e

ffi
ci

en
cy

 [%
]

number of threads

Cooling tower, 66000 DOFs

assembling
solving

perfect speedup

Figure 4: Speedup of the assembling and the solving process for a small cooling tower
benchmark computed on a distributed memory cluster

8



0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30
0

10

20

30

40

50

60

70

80

90

100

sp
ee

du
p

pa
ra

lle
l e

ffi
ci

en
cy

 [%
]

number of threads

Cooling tower, 263000 DOFs

assembling
solving

perfect speedup

Figure 5: Speedup of the assembling and the solving process for a large cooling tower
benchmark computed on a distributed memory cluster

It can be observed, that the solver exhibits a nearly perfect speedup on up to 32
threads whereas the assembling process performance drops for more than 8 threads
and reaches a final efficiency of 70%. This can be explained by the communication
overhead in the assembling of the global system matrix. For larger number of threads,
the size of each subdomain becomes too small to take advantages from the paralleli-
sation. This effect vanishes when a larger system is computed, as shown in Fig. 5.
Here it can also be seen that the solver shows a superlinear speedup. This, as well
as the optimal speedup in the smaller example can be attributed to the memory re-
quirements of the KLU preconditioner and its effectiveness in the improvement of the
matrix condition that depends on the block size. While the preconditioner has an algo-
rithmic complexity of greater than O(n2), the iterative solver for the global problem
has a complexity of approx. O(n). Thus, the larger sub-domains in the case of fewer
numbers of threads are much more expensive in terms of the preconditioning than the
increasing size of the interface problem to be solved iteratively with growing numbers
of threads.

4.2 Benchmark 2: Contact analysis using ccNUMA memory allo-
cation

The effect of an optimised allocation strategy for ccNUMA architectures is demon-
strated by means of a simple contact benchmark. Here, the assembling of the global
system of linear equations requires a large share of the total turnover time since the
computation of the element stiffness matrices follows a complex algorithm. Thus, the

9



sp
ee

du
p

number of threads

2

4

6

8

10

12

14

16

2

non-optimised
optimised

6 8 124 16

Figure 6: Effect of ccNUMA-aware optimisation of the memory allocation on the
speedup of the assembling process: left: discretised benchmark system; right: speedup
plot

effect of access to a single processor’s local memory by all threads becomes most ev-
ident. The example has been computed on a 16-core AMD Opteron system that uses
a hypercube ccNUMA architecture. Fig. 6 shows the effect this optimised allocation
has on the parallel performance of the assembling process. It can be seen that without
the optimised allocation strategy, the memory access bottleneck prevents the speedup
from growing beyond 4 threads, whereas with a distributed memory allocation the
speedup is nearly optimal up to 16 threads.

4.3 Benchmark 3: Parallel performance of tunnelling simulations

On a distributed memory computer cluster, two shield tunnelling simulations of dif-
ferent sizes have been computed at different numbers of threads. The smaller model
features 8 steps of excavation at a total model length of 24 m whereas the larger model
consists of 56 excavation steps at a length of 96 m. The domain decomposition of the
larger model at 64 threads is shown in Fig. 7. As linear solver, analogous to the cooling
tower example, the KLU-preconditioned iterative GMRES solver has been employed.
The speedup plots in Figs. 8 and 9 show that the larger model exhibits a much bet-
ter parallel performance than the smaller model, as was else observed in the cooling
tower example. It can be further noted, that the additional complexity of the model in
comparison to the simple structural model above reduces the parallel performance sig-
nificantly. Yet, for the larger model a satisfactory parallel efficiency of approx. 60%
can be achieved.

10



Figure 7: Domain decomposition of the larger shield tunnelling example running at
64 threads on a computer cluster.

sp
ee

du
p

number of threads

pa
ra

lle
l e

ffic
ien

cy
 [%

]

4

8

12

16

20

24

28

32

8 164 32

100

80

20

40

60

small model
large model

distributed memory tunnel simulation: assembling process

Figure 8: Speedup of the shield tunnelling simulations on a distributed memory clus-
ter: assembling process

11



sp
ee

du
p

number of threads

pa
ra

lle
l e

ffic
ien

cy
 [%

]

distributed memory tunnel simulation: KLU-preconditioned GMRES solver

4

8

12

16

20

24

28

32

8 164 32

100

80

20

40

60

small model
large model

Figure 9: Speedup of the shield tunnelling simulations on a distributed memory clus-
ter: solving process

5 Concluding remarks

Several parallelisation concepts have been presented and demonstrated for the solu-
tion of finite element models in structural mechanics. The capability of the presented
software framework KRATOS to combine arbitrary algorithmic implementations, as
for example contact algorithms, multi-phase and multi-physics formulations, or mesh
coupling techniques, with each other regardless of the parallelisation method used,
constitutes a considerable advantage for the testing of different linear solvers. In the
context of the numerical simulation of the shield tunnelling process, the employed
finite element model imposes high challenges for the efficient solution of the system
equations.

It has been shown that problems in structural mechanics up to a relatively large size
can be solved with similar efficiency with a good direct solver as well as with an itera-
tive solver on shared memory systems. Considerable speedup could only be achieved
on a distributed memory system using an iterative solver that is preconditioned by the
block-wise application of a direct solver. However, also here the complexity added by
the tunnelling simulation compared to a simple structural problem drops the parallel
efficiency considerably.

The applicability of effective preconditioners for structural problems on GPGPUs is
still limited. Here, an improvement in the memory allocation capabilities on graphics
processors may allow for a performance that goes far beyond the performance of CPU
architectures.

12



6 Acknowledgements

This work has been supported by the German Science Foundation (DFG) in the frame-
work of the Collaborative Research Center SFB 837 “Interaction Modelling in Mech-
anised Tunnelling”. This support is gratefully acknowledged.

References
[1] F. Nagel, J. Stascheit and G. Meschke, “Process-oriented numerical simulation

of shield tunneling in soft soils”, Geomechanics and Tunnelling, 3, 268-282,
2010.

[2] T. Laursen, “Computational Contact and Impact Mechanics”, Springer, 2002.
[3] F. Nagel, A. Bezuijen, J. Stascheit and G. Meschke, “Measurements and simula-

tions of fluid and ground pressures around a TBM”, International Conference on
Computational Methods in Tunnelling (EURO:TUN 2009), 61-70, 2009.

[4] J. Bluhm and R. de Boer, “The Volume Fraction Concept in the Porous Media
Theory”, Zeitschrift fur angewandte Mathematik und Mechanik, 77, 563-577,
1997.

[5] Pooyan Dadvand, Riccardo Rossi and Eugenio Oñate, “A Framework for Devel-
oping Finite Element Codes for Multi-disciplinary Applications”, Proceedings
of the 8th World Congress on Computational Mechanics, 2008.

[6] J. Stascheit, P. Dadvand and G. Meschke, “Parallelisation techniques for the nu-
merical simulation of shield tunnelling processes”, in: International Conference
on Computational Methods in Tunnelling (EURO:TUN 2009), 1032-1038, 2009.

[7] M. A. Heroux, “Epetra Performance Optimization Guide”, Technical Report,
Sandia National Laboratories, 2005.

[8] E. P. Natarajan, “KLU - A high performance sparse linear solver for circuit sim-
ulation problems”m Master’s Thesis, University of Florida, 2005.

[9] http://www.khronos.org/opencl/
[10] http://viennacl.sourceforge.net/
[11] O. Schenk and K. Gärtner, “Solving unsymmetric sparse systems of linear equa-

tions with PARDISO”, Future Generation Computer Systems, 20, 475-487,
2004.

13


