
Abstract

Coupled simulations of partially saturated soils using finite element analysis lead to
systems of equations that are difficult to solve for iterative solvers. In the framework
of a simulation model for shield tunnelling that considers various components of the
tunnelling process - the ground, the lining, the grouting, hydraulic jacks and supports,
the ground and the grouting mortar are formulated as two- and three-phase continua,
consisting of solid particles, water and air. The coupled formulation of the underlying
discretised differential equations leads to a block-structured system of equations. An
iterative solver is employed to solve the system within an implicit Newton-Raphson
solution strategy. In this contribution, we examine a block-preconditioning technique
to accelerate and stabilise iterative solvers in large scale simulations and that has been
specifically designed to address the various challenges of the problem, mainly ill-
conditioning and non-symmetry of the coefficient matrix. The key result is to realise
the effectiveness of the technique in a parallel regime which ensures scalability and
efficiency. Furthermore, the mesh-independent convergence properties and the insen-
sitivity to model parameters of the implemented preconditioner are shown.

Keywords: Coupled problems, FEM, shield tunnelling, mixed formulation, block-
preconditioning, preconditioned Krylov solver.

1 Introduction

Shield tunnelling is characterised by a complex construction process and often in-
volves intricate interactions between the ground, the supporting measures, the tail void
and the tunnel boring machine (TBM). The tunnels are often constructed in severe ge-
ological conditions such as high ground water pressures and soft soils. Therefore, it
is impacted by water ingress and soil settlements in front of cutting face and along
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and behind the shield skin. Settlements are also caused by consolidation of soil in a
long term. Moreover, in the case of fixing and maintenance of the cutting wheel using
temporary compressed air support, air may flow into the heading face and lead to a
partially saturated zone in the soil ahead of the face. All of the above yields reactions
in the ground, characterised by a stress redistribution in the soil skeleton, changing
water pressures and pore saturation as well as ground deformations. To mitigate fail-
ure, a range of support measures is kept along with the tunnelling process: the heading
face is supported by a pressurised support medium, the soil is in frictional contact with
the shield skin and the annular gap is filled with grouting mortar at the time the ma-
chine is thrusted forward to ensure the stability of the surrounding soil, to minimise
settlements and to prevent water ingress into the tunnel.
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Figure 1: Components of typical mechanised tunnelling process and spatial discreti-
sation of tunnelling simulation

Fig.1 presents typical components of a tunnelling process. In Fig.1a, (1) represents
the ground model, (2) the tail void grouting, (3) the diving wall, (4) the heading face
support, (5) the shield tail, (6) the hydraulic jacks, and (7) the lining. In Fig.1b, the
spatial discretisation of the tunnelling simulation model is shown. (1) marks the mesh
for heading face support where a boundary condition of water pressure is applied, (2)
are contact elements which represent the interaction between the tunnel lining and the
soil, (3) are pressure conditions to simulate the pressurised grouting of the annular
gap.

During maintenance phases, the support medium can be temporarily replaced by
compressed air (compressed air intervention). To model this, it is compulsory to use a
three-phase formulation to capture the complex interactions with sufficient accuracy.
In the numerical simulation framework for tunnelling (ekate), the triphasic model for
a time variant description of partially saturated soil [2] is used. The model is formu-
lated within the framework of the theory of porous media (TPM), based upon phase
balance equations and constitutive relations for the stress-strain behaviour of the soil
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skeleton, the pressure-density relation of gaseous phase, the pressure-suction relation
and the pressure-seepage flow relation. The balance equations are solved simultane-
ously instead of consecutive steps of solving the fluid flow problem and the momentum
balance of soils separately. Therefore, it allows for a fully coupled triphasic soil mod-
elling and enables a consistent formulation of two-phase (i.e. water phase and gaseous
phase) flow problem.
In the coupled model - consisting of an elasto-plastic soil skeleton, pore water and
pore air - the water is modelled as an incompressible phase and air as a compressible
phase. Within the TPM framework, each fluid phase is associated with its own state
of motion. The fluid flows are characterised by Darcy’s law. The capillary effect of
suction of water into the pore space is described by the Soil-Water characteristic curve
(SWCC). The clay and sand model (CAS-model) [2] is implemented to account for
partially saturated soil behaviour. A large deformation formulation is used in varia-
tional form to fully describe the soil deformation.
The coupled formulation leads to a block structure of the system stiffness matrix. To
solve the resulting system of equations and to ensure scalability, an iterative solver
employing the Krylov subspace method is used. Since direct solvers require much
memory as the size of problem grows, an iterative method is apparently the choice of
interest. Nevertheless, the main challenge of an iterative method is to design a good
preconditioner by means of improving the condition of the system matrix and acceler-
ating the convergence behaviour. In the coupled simulation of partially saturated soil,
the preconditioner is designed in the way that the iterative solver is able to exhibit
mesh-independent convergence [1]. Preconditioning a matrix means finding a good
approximation of its inverse with reasonable computational effort. In this sense, the
system matrix can be decomposed by a block LU factorisation and the problem of
finding approximate inverse can be reduced to finding the approximate inverse of the
block matrix of the solid part and its Schur complement.

2 Model of coupled partially saturated soil and the two-
phase flow

The partially saturated soil consists of three phases φα: the solid phase φs, the liquid
phase of pore water φw and the gaseous phase of pore air φa (see Fig.2a). Each phase is
represented by its volume fraction nα. The pore space of solid phase is assumed to be
completely filled with fluid phase φβ [β=w(ater),a(ir)] which are able to flow through
its pore voids. The exact microstructure of these pore voids is not important and
the interaction between fluids and pore skeleton is described by using the averaging
principle.

ns + nw + na = 1 (1)

Using the averaging principle, the density of each phase can be defined knowing
its intrinsic density %α and it volume fraction:
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ρα = nα%α (2)

The pore volume is defined as volume fraction of fluid phases n = nw+na = 1−ns.
The saturation Sβ of the pore space with the respective fluid phase φβ is expressed as

Sβ =
nβ

n
(3)

Note that Sa = 1−Sw. Following eq.(2), the overall density of the porous mixture
can be expressed as function that depends on the pore volume and the water saturation

ρ = Σαn
α%α = (1− n)%s + n(Sw%w + (1− Sw)%a) (4)

In case of deformation of the mixture, the motion of a material point in each phase
is a function of time and its location in reference configuration (Lagrangean descrip-
tion):

xα(Xα, t) = Xα + uα(Xα, t) (5)

Moreover, the motion of the fluid phase φβ with respect to the solid phase is denoted
as diffusion velocity

vβs = ẋβ − ẋs (6)

Averaging eq.(6) leads to Darcy velocity

ṽβs = nSβvβs (7)

a) b)

σ3

σ2

σ1

σ 1
=σ 2

=σ 3

CS
L

p0p'

Critic
al State Line

yield su
rfa

ce

q

current configurationreference configuration

ϕs

ϕw

ϕa

X x

soil skeleton
pore water
pore air

Figure 2: Ground model: a) The multiphase character of unsaturated soil, (b) Illustra-
tion of yield surface of Clay and Sand model in the principal stress space and in the
deviatoric plane
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2.1 Balance equations for the solid phase and two phase flows

To derive the equilibrium state of the mixture, it’s important to assume that the solid
phase and water phase is incompressible and the air phase is a compressible, ideal
gas. This condition can be described as the derivative w.r.t time of intrinsic density of
solid phase and water phase in its respective configuration is vanished. Moreover, tak-
ing into account the mass balance equation of multiphase mixture, the phase balance
equation of partially saturated soil can be described as

n
∂sSw

∂t
+ div ṽws + Swdiv u̇s = 0 (8)

nSa

%a
∂s%a

∂t
+ n

∂sSa

∂t
+

1

%a
grad %a · ṽas + div ṽas + Sadiv u̇s = 0 (9)

Assuming quasi-static condition (ü = 0), The overall momentum balance of the
mixture can be read

div σ + ρg = 0 (10)

With ρ is described in eq.(4) and the total stress σ is constituted by stresses in each
phase: σ = (1− n)σs − n(Sapa + Swpw)I

From eq.(8), (9) & (10), it is essential to choose the primary field variables as
displacement us of the solid phase and hydrostatic pressure pw, pa of the water and air
phase respectively.

2.2 Constitutive relation in solid phase

To describe the elasto-plastic behaviour of the soil skeleton, the elastic Hookean law
and the CAS-model [2] are used. The CAS-model is a generalisation of the Cam-Clay
model and is characterised by yield surface (see Fig.2b)

F =

( √
3J

M(θ)p′

)n

+
1

lnr
ln
p′

p′0
= 0 (11)

The CAS-model employed in this formulation use the same hardening law as in
Cam-Clay model to express the elastic-plastic behaviour while using a modified stress-
dilatancy relation. The model also incorporates the capillary pressure into the yield
rule and hardening law according to Barcelona basic model [7].

For two-phase flow within solid skeleton, the water saturation Sw depends on capil-
lary pressure pc = pa− pw. Owing to capillary effect, if the pore volume is small then
the water can resist more capillary pressure and vice versa. The relation between wa-
ter saturation and capillary pressure within the pore voids is found by experiment and
is described by soil-water characteristic curve. In this work the formulation according
to Van Genuchten [8] is used:
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Sw(pc) = Swmin + (Swmax − Swmin)

(
1 +

(
pc

prb

)n)−m
(12)

An example of SWCC is shown in Fig.3. The SWCC depends on the grain size,
the pore size distribution and the compaction of the soil.
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Figure 3: Computed relation between saturation and capillary pressure according to
Van Genuchten [8]

3 Finite element formulation and discretisation proce-
dure

The coupled equations for partially saturated soil and multiphase flow is space and
time-dependent, hence space and time discretisation are required. Using an usual
finite element discretisation procedure, the formulation in strong form is converted to
variational form by multiplying the strong form equations with the trial functions and
integrate over the whole domain. In this case, the trial functions are the variation of
displacement and the variation of pressures. The integration is converted to bilinear
form with the application of Green formula. From eq.(8) & (9), these results in

∫
Ω

δpwn
∂Sw

∂pc
(ṗa − ṗw)dV +

∫
Γw
N

δpw(ṽws · n)dA

−
∫

Ω

grad δpw · ṽwsdV +

∫
Ω

δpwSwdiv u̇sdV = 0

(13)

And
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∫
Ω

δpa
nSa

%a
∂%a

∂pa
ṗadV +

∫
Γa
N

δpa(ṽas · n)dA−
∫

Ω

grad δpa · ṽasdV

+

∫
Ω

δpan
∂Sa

∂pc
(ṗa − ṗw)dV +

∫
Ω

δpaSadiv u̇sdV

+

∫
Ω

δpa
1

%a
∂%a

∂pa
grad pa · ṽasdV = 0

(14)

Finally, the momentum balance in its variational form can be expressed as∫
Γs
N

δus · σ · ndΓ−
∫

Ω

grad δus : σdV +

∫
Ω

δus · ρgdV = 0 (15)

Eq.(13), (14), (15) constitute the system of equations to be solved for phase bal-
ances of multiphase mixture. To discretise these equations of multiphase materials
which can behave incompressibly, the mixed-FEM approach has been used in which
quadratic Lagrangean shape functions are used for approximation of the displacement
field and linear Lagrangean shape functions are used for approximation of the pres-
sure field. By using this approach, Babuŝka-Brezzi stability constraint for multiphase
materials is fulfilled.

In terms of time discretisation, the generalised Newmark-α method [9] has been
used to ensure unconditional stability and second-order accuracy. This time integra-
tion scheme use a modified mid-point rule to approximate primary variables (•)n+1−α =

αf (•)n+(1−αf )(•)n+1 and its time derivatives ˙(•)n+1−α = αf ˙(•)n+(1−αf ) ˙(•)n+1.
The velocity and acceleration of primary variables at current time step is approximated
by:

˙(•)n+1 =
γ

β∆t
((•)n+1 − (•)n)− γ − β

β
˙(•)n −

γ − 2β

2β
∆t ¨(•)n

¨(•)n+1 =
1

β∆t2
((•)n+1 − (•)n)− 1

β∆t
˙(•)n −

1− 2β

2β
¨(•)n

(16)

Within the Newton-Raphson iteration scheme, eq.(14), (15) and (13) is linearised
and solved in each time step using the state update equations:

∆us

∆pw

∆pa


n+1

=

Kmu Kmw Kma

Kwu Kww Kwa

Kau Kaw Kaa

 (1− αf ) +

Dmu Dmw Kma

Dwu Dww Kwa

Dau Daw Kaa

 (1− αf )
γ

β∆t

−1

n+1−α

×

Rm
ext −Rm

int

Rw
ext −Rw

int

Ra
ext −Ra

int


(17)
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4 Iterative solver

The state update equation (17) can be rearranged in block form as[
A B1

B2 C

] [
∆U
∆P

]
=

[
Ru

Rp

]
(18)

In whichA = Kmu,B1 = [Kmw Kma],B2 = [Kwu Kau]
T andC =

[
Kww Kwa

Kaw Kaa

]
are matrices representing the solid phase, coupling between the solid and fluid and

fluid phase respectively. For ease of representation,
[
A B1

B2 C

]
is denoted as J and[

Ru

Rp

]
as b.

In this contribution, the main goal is to solve (18) in the efficient and scalable man-
ner. The direct method becomes memory-limited when the size of problem is large.
Although there are direct solvers which can solve the large linear system of equations
in scalable manner (i.e. frontal solvers), iterative solvers are the method of choice to
solve the large system involved in large-scale simulations of shield tunnelling.

Eq.(18) is subject to ill-conditioning considering that when the mixture is in satu-
rated state, the C block vanish, leaving the system of equations has the form of saddle-
point structure [1]. From a physical point of view, this means that the pore fluid exerts
an incompressibility condition on the deformation of solid when permeability goes to
zero. Even though in this work, the mixture is considered as unsaturated, the differ-
ence in C block and A block is huge, leading to ill-condition and instability in the
result of linear solver.

The iterative solver employing Krylov subspace method is the method of choice
for many parallel applications. However, given the sensitivity of the Krylov subspace
method to the conditioning properties of system matrix, preconditioning is required.
In this work, the left preconditioning technique is chosen, i.e. to find a good approxi-
mate inverse of matrix J .

P−1Jx = P−1b (19)

The computation of P is addressed to solve the coupled model in the sense that a
mesh convergence property can be achieved. As opposed to the linear solver, which
is standardised, the preconditioning method for a particular type of problem is not
fixed since there are various methods to approximate the inverse of J . General pre-
conditioning techniques (i.e. ILU, ILUT) perform well in most applications, however
the convergence properties are unpredictable in the sense that the convergence rate
depends on the problem size and the iterative method chosen. Observed numerical re-
sults for coupled problems show that the standard preconditioning techniques behave
stably but the convergence varies among time steps and when the mesh is refined, the
solver takes more iterations to converge. Despite the upper limit for the number of
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iterations for standard Krylov subspace iterative method (i.e. BiCG) is n (i.e. num-
ber of degrees of freedom), this is unacceptable since n can be millions. Apparently,
the structure of the coupled matrix has some effects on the efficiency of this kind of
preconditioner. For example, if ILU is used, the inverse of the coupled matrix is com-
puted from its partial LU decomposition. Therefore, the approximation may be good
in the solid block but it is not in the fluid block.

4.1 Block preconditioner

Block preconditioning is the strategy of choice for preconditioning the coupled system
matrix for the aforementioned reason. In this contribution, the block LU factorisation
[1] is of particular interest:

J =

[
A B1

B2 C

]
=

[
A 0
B2 S

] [
I A−1B1

0 I

]
(20)

Where S = C − B2A
−1B1 is the Schur complement w.r.t the solid block A of the

system. The preconditioner to be chosen is to approximate the inverse of the lower
part of the block LU and has the form:

P−1 = L−1 =

[
P−1
A 0

−P−1
S B2P

−1
A P−1

S

]
(21)

P−1
A and P−1

S are sub-preconditioners to approximate the inverse of A and S since
the exact inverse of those blocks are expensive to compute. The choice of them is var-
ious and can be customised. While preconditioning for the solid block is straightfor-
ward and can be chosen as ILU preconditoner or multigrid preconditioner (i.e. AMG),
the preconditioner for the Schur complement is non-trivial to compute in the sense that
the A−1 is dense while C is sparse. Therefore the Schur complement is replaced by
its approximation

SD = C −B2diag(A)−1B1 (22)

Hence the preconditioner for S becomes P−1
S = P−1

SD
. This preconditioner is easier

to compute, though its quality depends on the diagonal dominance of A.
In parallel computing, the domain partitioning method is frequently used to par-

tition the primary domain to sub-domains in order to distribute the work to several
processors. This contribution exploits the distributed computing model using a cluster
with multi-core processing units per node to perform the parallel assembling of the
coupled stiffness matrix and parallel solving of the coupled system of equations. The
domain partitioning is used to separate domains with criteria to minimise the interface
between adjacent domains in order to reduce communication time of transferring in-
formation between different domains. The use of domain partitioning leads to block
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structure for each domain in the final assembled system of equations. In case the do-
main is decomposed to two sub-domains, the coupled stiffness matrix has the form
of

J =


[
A1

1 B1
1

B1
2 C1

]
E1

2

E2
1

[
A2

1 B2
1

B2
2 C2

]
 (23)

Figure 4: Coupled stiffness matrix for problem with 2 phases, computing on 2 pro-
cesses

Fig.5 shows a typical stiffness matrix distributed on two processes. In this form,
one can see that the matrix is composed of separated part for each process. Each
process contains a block of the solid part and a block of the fluid part. The interface
matrices are sparse and can be ignored for preconditioning purpose.

In Eq.(24), the upper index is the domain index, the terms E1
2 and E2

1 are related to
d.o.fs belonging to the interface between two domains. If the sub-domains are com-
pletely separated, these matrices become zero. Therefore, the minimisation of domain
interface is important to preserve a good block-structure. To design the preconditioner
for partitioning matrix J , the interface matrices E1

2 and E2
1 is eliminated and J is

replaced with J̃ .
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J̃ =


[
A1

1 B1
1

B1
2 C1

]
0

0

[
A2

1 B2
1

B2
2 C2

]
 =

[
J1 0
0 J2

]
(24)

The preconditioning problem for J̃ becomes finding preconditioner for J1 and J2

and can be solved by the above approach. The preconditioner P̃−1 for J̃ is computed
as:

P̃−1 =

[
(P 1)−1 0

0 (P 2)−1

]
(25)

5 Numerical examples

As pointed out earlier, the block preconditioning strategy depends on the choice of
sub-preconditioners to precondition the solid block and its Schur complement. In this
contribution, the same preconditioning strategy is applied for both matrices. In the first
step to experiment the performance of this preconditioner for a partially saturated soil
problem, the ILU0 preconditioning technique is tested. The block preconditioner is
combined and tested using robust iterative solvers which are biconjugate gradient sta-
bilised method (BICGSTAB) and generalised minimum residual method (GMRES).
The results obtained is then validated for accuracy with a solution obtained with a
reliable direct solver (MKL Pardiso solver).

The Finite element framework employed in the analysis is KRATOS [10], de-
veloped at International Center for Numerical Methods in Engineering (CIMNE) at
Barcelona. KRATOS is an object-oriented multidisciplinary finite element framework
supporting a flexible data structure and is easy to extend through templates and class
inheritances. KRATOS has a built-in solver and preconditioner interface, hence ex-
ternal solvers/preconditioners can be incorporated easily. ekate (Enhanced KRATOS
for Tunnel Engineering) is an application developed within KRATOS to support tun-
nelling simulations. Among others, ekate features a finite element formulation for
partially saturated soil problems and utilities to generate Python scripts for convenient
and flexible simulation setups. ekate also extends KRATOS functionalities by intro-
ducing a contact algorithm which is an important component for a realistic simulation
of tunnel advance.

As noted earlier, four solution strategies are tested in order to compare the per-
formance of the proposed preconditioner. The two preconditioning strategies which
are block preconditioning (BP) and ILU0 are coupled with BICGSTAB and GMRES
iterative solvers. The simulations are run using shared memory parallelisation on a
quad-core computer (AMD Phenom X4 2.2 MHz). OpenMP parallelisation is em-
ployed in the assembling phase to accelerate the assembly process. OpenMP is also
used in matrix-vector operations in the iterative solvers to improve the performance.
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5.1 Dewatering of a sand column

The testing problem is the model of column with height of one meter [4]. At the first
step of simulation, water is put on the top surface of the column. This is achieved
by setting a fix amount of pressure on this surface. In the subsequent step, the water
pressure on the top surface is fixed. Under the influence of gravity, water starts to flow
out slowly from the column. Due to capillary effects, some residual water still retains
in the column. This behaviour is expressed in the figures below.

Figure 5: Dewatering of the sand column

The simulation parameters of this example are as follows:

Table 1: Simulation parameters for column dewatering problem
Parameter Symbol Column dewatering Units
Young modulus E 1e9 Pa
Poisson ratio ν 0.3
Gravity g -9.81 m/s2

Soil density %s 1500 kg/m3

Water density %w 1000 kg/m3

Air density %a 1.295 kg/m3

Soil porosity ns 0.2
Water permeability kw 4.4e-6 m2

Air permeability ka 3.2e-7 m2

Three mesh discretisations are used as input for the finite element simulation. The
tested meshes are structured and are refined in the vicinity of top surface to account
for rapid change of water pressures in this area.

Table 2: Mesh discretisations
Ref Total unknowns Displacement Pressure
1 625 580 45
2 4516 4266 250
3 34090 32470 1620

In order to obtain representative results, the performance measures (i.e. number
of iterations, solving time and building time) are averaged after each simulation. In
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fact, depending on the characteristics of partially saturated soil and relative state of
water and air, the stiffness matrix of the system may vary and affect the convergence
bahaviour. The time step also states a dominant factor to deteriorate the number of
iterations. Larger time steps lead to a softer matrix which is more ill-conditioned and
hence needs more iterations to converge. Nevertheless, the avarage quantities are a
valid indicator to verify the efficiency of the respective method.

Table 3: Computation results with OpenMP code
Strategy Ref Building time (s) Average iteration Average time (s)
BICGSTAB-BP 1 0.14 18.5 0.16
BICGSTAB-ILU0 1 0.14 27.0 0.18
GMRES-BP 1 0.14 25.0 0.15
GMRES-ILU0 1 0.14 30.5 0.15
BICGSTAB-BP 2 1.01 40.4 2.26
BICGSTAB-ILU0 2 1.00 35.5 1.95
GMRES-BP 2 1.00 46.8 1.71
GMRES-ILU0 2 1.01 45.9 1.58
BICGSTAB-BP 3 8.15 91.8 35.70
BICGSTAB-ILU0 3 8.03 71.1 26.67
GMRES-BP 3 8.09 100.7 22.66
GMRES-ILU0 3 8.11 86.7 19.28

Table 3 shows the results of the performance test for the four tested schemes w.r.t
different mesh size. It can be seen that the block preconditioning strategy in fact does
not perform better than ILU0 when fine meshes are used. It also performs worse if the
same iterative method is used for both preconditioning strategies. with respect to mesh
dependency, it is clear that more iterations are needed as the problem size grows. As
mentioned earlier, the current block preconditioning technique uses ILU0 as the sub-
preconditioners for the diagonal blocks. The same behaviour has been observed in
[1] when block preconditioning combines with ILU did not exhibit mesh-independent
convergence properties. This initiates the idea to apply a different preconditioning
strategy for the sub-preconditioners (e.g. AMG). However, one can note that block
preconditioning works better if it is used with BICGSTAB method.

6 Conclusion

In this work, a block-preconditioning technique for partially saturated soil simulation
is studied. Although a mesh-independent convergence property is not shown in the
current setup, it provides some valuable insight of the convergence properties for this
particular problem. The current work shows that the ILU0 preconditioner is not a good
candidate for sub-preconditioning of the block matrices. On the other hand, the key
challenge is to implement the proposed method into a distributed memory environment
which provides better scalability. This will be a subject of future research.
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