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Abstract

In this paper, a thermodynamically consistent four-phase continuum model
in the framework of the mixture theory is presented describing infiltration
processes of suspensions in cohesionless granular material. The paper focuses
on the distinct form of the constitutive relation for the volume production
term of the fluidized particles and its consequences on the infiltration process.

To this end a constitutive equation describing infiltration phenomena is pro-
posed which includes only one material parameter. Therefore we study nu-
merically a boundary value problem, which is characterized by a homoge-
neous field of the hydraulic gradient in the reference configuration at the
time t0 = 0. Infiltration is affecting the distribution of the hydraulic prop-
erties and illustrates the consequences of the proposed constitutive equation
for specific parameter choices. Furthermore it is shown how the material
parameter can be estimated without explicit numerical calculations.
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1 Introduction

Infiltration processes are characterized by seepage flow of a complex fluid
through a porous medium and a possible deposition process of the fines of
the suspension. Complex fluids are mixtures of a liquid - mostly water - and
small particles (fines) moving with the fluid. According to the necessities of
the investigated infiltration process the velocity of the fines may be assumed
identical to the fluid velocity.

The deposition of fines in the pore space of the porous medium results in
considerable changes of the material properties of the porous medium. On
the one hand, mechanical properties are changed. The structural stiffness is
increased due to a reduction of pore space and additional material strength
coming from the deposited fines - being part of the skeleton after deposition.
On the other hand, hydraulic properties like the hydraulic conductivity and
the effective viscosity of the particle-laden fluid are modified. Macroscop-
ically, the reduced pore space leads to lower permeabilities as well as to a
change of effective viscosities due to the phase change of the former fluidized
fines.

Deposition is triggered/controlled in two ways: Hydraulic reasons trigger the
process whereas geometrical properties on the microscale control the pro-
cess. The geometrical requirements for a decomposition process can read-
ily be taken e.g. from Terzaghi’s filter laws [15] indicating that some of
the fines of the particle-laden fluid cannot pass the constriction sizes of the
porous medium. Once these requirements are met, larger deposition rates
are achieved by a higher hydraulic gradient. Additionally taking sedimenta-
tion effects into account - which is not the case in the proposed model - also
gravity forces in conjunction with a rather low hydraulic gradient increase
the deposition rate.

Depending on the initial conditions of the the porous medium and the com-
plex fluid (pore constriction size distribution on the microscopical scale of
the porous material, hydraulic gradient) there are basically two kinds of in-
filtration processes which should be distinguished. A steady going one, where
deposition of fines takes place rather slowly due to an initially big pore space
and a rather low hydraulic gradient and secondly a rapid infiltration which is
caused by a high hydraulic gradient and initially small constriction sizes lead-
ing to a highly localized clogging effect. Clogging effects during infiltration
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is very well known in various applications. Mainly, we distinguish between
so-called external and internal filter cakes due to clogging phenomena, cf.
Figure 5.

Besides various possible applications for the proposed model, such as hard-
ening of soils in mines or land improvements, the authors’ main focus is on
the field of mechanized tunneling. Due to technical reasons during a typical
excavation process of a tunnel lining, a gap is opening between the lining and
the surrounding soil. This gap contributes significantly to a change in the
mechanical parameters of loose soil, which leads to unwanted subsidence at
the surface. Hence, it is desirable to close the gap created by the system of
tubbing. To this end the so-called backfilled grout mortar is injected. Dur-
ing the tunneling process distinct material properties of the backfilled grout
mortar are needed. First, the mortar should have a good flowability to ensure
mechanical processing and transporting of the mortar through the pipelines.
As soon as the mortar is in its final position, a rapid hardening is required,
which allows to reproduce the primary stress state of the surrounding soil,
so that surface subsidence are minimized. The respective strength can be
achieved by additives, which cause a hardening process of the mortar. A
cheaper and environmentally more friendly approach is to dispense largely
with cement portions and to drain the mortar via a high-pressure injection
process instead. During this procedure a consolidation process of the mor-
tar takes place, which causes a transport of the mortar’s pore fluid into the
surrounding soil, so that the mortar is transformed into a solid, gap-filling
structure.

2 Governing equations of infiltration processes

Fig. 1 sketches the characteristic micro-structure of a fluid-saturated gran-
ular media, which we investigate in the current contribution. The principal
material properties are caused by the complex pore fluid which itself is a
mixture of a pore liquid and fine-grained particles. Due to drag forces, the
complex fluid, i.e. the suspension, could be transported through the porous
skeleton or, if the constriction sizes of the pore spaces are too small, the
fines are blocked in the pore constriction sizes. Obviously, this local blocking
leads to an evolution of the hydromechanical properties of the material. In
this contribution, we propose a macroscopic model which is able to predict
the evolution of the intrinsic permeability and porosity of the skeleton and
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therefore could be used for predicting numerically infiltration processes.

In contrast to extensively-discussed poroelastic models describing the hydro-
mechanical behaviour of soils, cf. Biot [1], Coussy [5], we desire the hydraulic
infiltration model by the thermodynamically-consistent Theory of Porous
Media (TPM) [1, 2, 3, 6, 8], which could be regarded as an extension of the
mixture theory, cf. Truesdell [16].

REV: dm, dv

ϕs

ϕl

ϕsnϕsa

ϕa ϕf

continuum mixture model

micro-scale 2-phase model 4-phase model

dms

dml

dvs

dvl

Figure 1: Microscale and REV of a fully-saturated soil and the corresponding
four-phase continuum model

Since the fluid is a suspension, two constituents ϕa and ϕf have been intro-
duced to describe its hydraulic behaviour in further detail. The evolution
of the fabric of the solid skeleton is modelled by a stable fabric ϕsn and the
fines ϕsa, which are blocked in the pore space. Thus a liquid-solid phase
transition process is taken into account. Related to the current conditions
fines can either behave fluid-like (described by constituent ϕa) or solid-like,
(described by constituent ϕsa). This phase transition process will be taken
into account in the present model by a mass/volume production term in the
corresponding partial mass/volume balances of the constituents ϕa and ϕsa,
cf. Eq. (10). Altogether, we observe four participating constituents ϕα with
α = {f, a, sn, sa}, cf Fig. 1.

The macroscopic modelling idea i.e. the split in stable and unstable con-
stituents, traces back to ideas of Vardoulakis [17] and Steeb & Diebels [13]
describing the evolution of the fabric in the context of internal erosion. Never-
theless, the specific constitutive relation, which are the driving forces for the
evolution of the fabric has not been investigated for infiltration phenomena.
If the concentration of the fines is low and if the density contrast between
the fines and the pore fluid is not too high, we observe that the velocity of
the fines and of the pore fluid is almost identical, i.e. va = vf.
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In a certain Representative Elementary Volume (REV) with the volume dv,
cf. Fig. 1, the volume fractions of the single constituents ϕα are defined as

nα =
dvα

dv
. (1)

The partial density ρα is defined as the ratio between the mass dmα of the
phase ϕα with respect to the total volume dv of the REV, which leads to
a relation between partial densities ρα and effective densities ραR, the latter
one being the ratio between dmα and the actual volume of the phase dvα

ρα =
dmα

dv
=

dmα

dvα
dvα

dv
= ραR nα. (2)

As the 4-phase model is an extension of a previously discussed 3-phase model
for application in internal erosion, cf. [13], we briefly sketch the modelling
framework. Due to the so-called saturation condition

∑

α

nα = 1 ; nα ≤ 1 ; ρα ≤ ραR, (3)

the value of the partial density is always smaller than the value of the effective
one. The main part of the proposed model is the mass balance of the four
phases. Following Ehlers & Bluhm [8], de Boer [6] and Steeb [12], the local
form of the partial balance of mass is given as

(ρα)′α + ρα div vα = ρ̂α, (4)

whereas a constraint for the mixture mass production
∑
α

ρ̂α = 0 for thermo-

dynamically closed systems guarantees that there is no mass production in
the total mixture ϕ =

⋃
α

ϕα, being the assembly of all single phases. Since the

partial density is given in a spatial description, the material time derivative
(ρα)′α is expressed by the partial and the convective time derivative

(ρα)′α =
∂ρα

∂t
+ grad ρα · vα = ∂t (ρα) + grad ρα · vα. (5)

Furthermore, we assume that the constituents ϕa, ϕsa the fluid constituent
ϕf and the solid skeleton ϕsn are materially incompressible. Note that the
evolution of the porosity φ = 1 − ns in a certain REV is then described
through the deposition process of fines nsa, i.e. φ = 1−ns = 1−nsn−nsa. It
is obvious, that the partial density of the solid skeleton is also not a constant
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parameter as it depends on the porosity, i.e. ρs = (1− φ) ρsR. Therewith we
can reformulate the mass balance into

∂t (ρα) + div(ρα vα) = ρ̂α. (6)

Applying the definition of the partial density Eq. (2) and constant effective
densities ραR = ραR0 , we obtain

∂t
(
nα ραR

)
+ div(nα ραR vα) = ρ̂α = n̂αραR. (7)

Note, that the partial density exchange rate ρ̂α is split into a part depending
on the effective density and a volume-driven exchange rate n̂α. If the effective
density is constant, which will be the case for a material incompressible
constituent ϕαR, the partial balance of mass is reduced to a partial volume
balance

∂t (nα) + div(nαvα) = n̂α. (8)

In the second part of this paper we will mainly discuss the influence of the
constitutively determined rate of volumetric mass exchange n̂α[1/s] in more
detail. Before we formulate the specific mass balances we discuss some of the
assumptions, which we introduce to simplify the hydromechanically-driven
infiltration process. Obviously, the attached fines and the primary fabric
move with the same solid velocity vs = vsn = vsa. Furthermore, we state
that there is no relative movement between fluid and fluidized particles, which
can be written as vl = va = vf. Hence, we introduce the relative fluid
velocity with respect to the solid phase, i.e. the seepage velocity wf, for the
purpose of materially objective constitutive equations wf = wa = vf − vs.
In a next step, we introduce new field variables that are more suitable for
physical interpretations. Thus, we introduce the porosity field φ(x, t), the
amount of attached fines a(x, t) which is related to the solid phase, and, the
concentration c(x, t) of the fluidized fines in the liquid suspension.

φ = nf + na,

ns = nsn + nsa = 1− φ,

a =
nsa

ns
, (9)

c =
na

φ
.
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2.1 Mass balances

As already mentioned in the previous sections, the transformation of state of
the fluidized fines into an attached particle is modelled via the rate of mass
exchange n̂α between the phases ϕsa and ϕa. The production of attached
fines is equal to the reduction of fluidized particles in the REV. In the present
paper, we focus on the hydraulic influence of this infiltration processes. An
evolution of mechanical properties like the stiffness of the porous skeleton
is out of the scope. Thus the deformation process of the skeleton will be
neglected (us = vs = 0) leading to

n̂a = −n̂sa =: −n̂s. (10)

The governing equations of the infiltration process are stated in the following.
We start with the balance of mass of the mixture which is the sum of all
partial mass balances Eq. (8). Transforming it using the definitions given
above and the saturation constraint Eq. (3)

∂t (nf + na + nsn + nsa)︸ ︷︷ ︸
1︸ ︷︷ ︸

0

+
∑

α

div(nαvα) =
∑

α

n̂α

︸ ︷︷ ︸
0

, (11)

leads finally to

div vs + div q = 0. (12)

Note, that the vanishing right hand side in Eq. (11) is a result of vanishing
mass productions ρ̂f and ρ̂sn and identical effective densities ραR of the phases
ϕsa and ϕa. In the balance of mass of the mixture, the so-called filter velocity
q = φ wf, has been introduced. The volume balance of porosity, i.e. of the
liquid suspension ϕl is obtained by summing up the volume balance of the
pore liquid ϕf and the volume balance of the fluidized fines ϕa

∂tφ+ div q = n̂a. (13)

Summing up the balance of volume of the primary fabric ϕsn and the balance
of attached fines ϕsa, we obtain an evolution equation for the porosity

∂tφ = n̂a. (14)

The balance of volume of the attached fines ϕsa is similarly collapsing to an
evolution equation for the amount of fines a (x, t)

∂t(aφ)− ∂t(a) = n̂a. (15)
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Later we will show, that both ordinary differential equations Eq. (14),(15)
can be solved locally. The balance of volume of the fluidized fines ϕa in the
suspension reads

∂t(c φ) + div(c q) = n̂a. (16)

Summing up all local partial mass balance of the constituents ϕα with α =
{f, a, sa, sn} we obtain the continuity equation of the mixture ϕ

div q = 0. (17)

Note, we are able to reduce the set of microscale quantities from four to three
(φ, a, c). The integration of the mass balance of the rigid primary fabric
leads to

nsn = nsn
0 (1− divus) = nsn

0 , (18)

in which the partial volume nsn can be expressed using the porosity φ and
the amount of attached fines a

nsn = (1− φ)(1− a), and nsn
0 = (1− φ0)(1− a0), (19)

leading to

φ = 1− (1− a0)(1− φ0)

(1− a)
, (20)

which can be used to eliminate one dependent variable from the set of equa-
tions

a = a(φ) =
a0(1− φ0) + φ0 − φ

(1− φ)
. (21)

The quasi-static balance of momentum of the fluid without volume forces,
the balance of mass of the fluid and constitutive assumptions reveal the
well-known Darcy relationship between the gradient of the fluid pressure
and the filter velocity, cf. Ehlers & Bluhm [8]. Here ηlR is the effective
dynamic viscosity of the particle-laden suspension depending on the amount
of fluidized particles c(x, t).

q = − k
s(φ)

ηlR(c)
grad p. (22)
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ks(φ) is the intrinsic permeability of the porous fabric depending on the
porosity φ(x, t). For the considered case of cohesionless granular media, the
intrinsic permeability ks [m2] could be related to the grain size distribution
function of the particle ensemble. Here, we calculate the permeability at the
initial state ks0 = ks(x, t0) with the Kozeny-Carman equation, cf. Carrier
[4]. The evolution of permeability ks(x, t) is related to the evolution of the
porosity φ(x, t)

ks(φ) = ks0

[ φ3

(1− φ)2

][(1− φ0)
2

φ3
0

]
and ks0 =

1

C1

φ3

(1− φ)2
D2
eq. (23)

C1 is the so-called Kozeny-Carman constant, cf. Irmay [11] or Ergun [10].
Deq is the equivalent particle diameter of the granular material. Einstein
[9] proposed the evolution of the effective dynamic viscosity of a suspension.
From an initial dynamic viscosity of a liquid ηfR, it could be calculated as a
function of concentration

ηlR(c) = ηfR
(

1 +
5

2
c

)
. (24)

It has to be noted that Eq. (24) has initially been proposed for dilute sus-
pensions. For more sophisticated viscosity corrections, e.g. for dense suspen-
sions, we refer to [7].

Thus, the following set of equations is remaining and is formulating the
Initially Boundary Value Problem (IBVP) of infiltration:

div

[
ks(φ)

ηf(c)
grad p

]
= 0, ∀x ∈ B × T

∂t(c φ) + div

[
c
ks(φ)

ηf(c)
grad p

]
= n̂a, ∀x ∈ B × T

with boundary conditions for the flux q at the Neumann boundary ΓN and
the pressure p at the Dirichlet boundary ΓD

q = q · n = q, ∀x ∈ ΓN × T
p = p. ∀x ∈ ΓD × T

The coupled nonlinear IBVP could be solved by numerical methods. Here,
we use Galerkin-type finite element schemes, described in Steeb [14]. The
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primary variables are P = {p, c}. The IBVP is completed, in combination
with the evolution equation ∂tφ = n̂a and Eq. (21) for a(x, t) and an appro-
priate constitutive equation for the rate of mass/volume production n̂a. The
form of the latter equation will be focussed in the next section.

3 Constitutive equation for mass exchange

To close the IBVP, it is necessary to find a formulation for the volume ex-
change term, the so-called production term n̂a. The structure of the term is
already known from previous publications, cf. [13, 12, 17]. In the context
of the mathematical formulation of general internal remodelling phenomena
described within the mixture theory by a mass production term, Steeb and
Diebels [13] pointed out, that a thermodynamically consistent form of the
constitutive equation for mass production reads

n̂a ∝ |q| . (25)

Physically this expression is also evident. The higher the flow in a REV,
the more particles per time unit will pass the REV. Hence the probability
of infiltration of individual particles or swarms of particles is higher. If we
consider the limiting case of a vanishing velocity (q = 0), then also the value
of the production term disappears. This fact can not be motivated physi-
cally, because for such a case of a vanishing fluid velocity one could observe
sedimentation of fluidized particles. At least this model focuses on infiltra-
tion phenomena and sedimentation is not taken into account. However, it
is readily possible to consider a relative movement of fines wa 6= wf and an
additional expression in the production term to describe these phenomena.

As already described, the probability of infiltration increases with an increas-
ing number of particles, which pass through the REV per time unit. This may
be a result from a higher flow rate or of a higher concentration of fluidized
particles in the fluid. Following the above argumentation, the probability of
infiltration increases with increasing concentration of fines c. Therefore, the
production term may be written as n̂a ∝ c |q|. In this case for c = 0, n̂a = 0
is obtained. This relationship illustrates that infiltration can only take place
if there are fluidized particles in the considered area.

To complete the expression for the production term a second parameter k
is added. This parameter is a scalar value, which has to be determined by
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experimental investigations. Finally the complete production term can be
written as

n̂a = −k c |q| . (26)

In the following section a numerical example will be analysed to illustrate the
complete set of equations. Subsequently, the recently introduced parameter
k will be discussed on the basis of the results of the numerical example.

4 Analysis of a 1-dim infiltration problem

The numerical solution of the IBVP will be explained in a 1-dim setting.
The investigated volume is fully saturated with the four previously described
phases ϕα. Dirichlet boundary conditions for the pressure p̄ are chosen for
the boundaries at x = 0 m and x = L. This is done in a way, that a pres-
sure gradient arises which initiates a fluid flow from the left to the right.
In addition, a time-constant Dirichlet boundary condition for concentration
c (x = 0), i.e. c̄ = 0.1 is prescribed. Within the domain an initial condition is
used for the concentration, setting c0(x) = 0.001. Thus the porous medium is
already saturated initially with a suspension. All four constituents are there-
fore present. The consequence of the present initial and boundary conditions
is a concentration influx leading to concentration front passing through the
domain from left to right. The boundary and initial conditions as described
above are summarized in Fig. 2a). The time-scale of the simulation covers the
duration of the concentration front propagation through the whole domain.

p0, c̄ c0 < c < c1

t > t0

L

c0, a0, φ0

c0, a0, φ0

filter velocity q

pL

pL

ex

t = t0

a)

b)

p0 > pL, c̄

Figure 2: Infiltration process: a) initial and boundary conditions for the
investigated domain; b) illustration of the concentration profile for t > t0

According to Fig. 3 the porosity φ(x, t) is changing in space and time. Hence,
parallel to the convective transport, an infiltration process takes place leading
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to a decrease of fluidized particles. This also indicates the smooth, gradual
character of the infiltration process. The values describing the concentration
c and the filter velocity of the fluid q are at their maximum in the begin
of the process. Although the Darcy velocity q is influenced by the increase
in viscosity, Eq. (24), and a decrease in permeability, Eq. (23), the latter
physical phenomenon is dominating.
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Figure 3: Contour plot describing the evolution of the porosity in space and
time in the domain

In contrast to classical seepage flow in porous media, the filter velocity q of
the front depends on the effective velocity which is a function of the concen-
tration of fines. Furthermore, the permeability is also not constant in the
domain and depends on the amount of infiltrated and deposited particles.
Within the flow-through fine grained material is deposited. Furthermore, it
is observed that the transport processes are essentially driven by convection.
Diffusion processes play only a minor role. This is concluded from the moving
front (steep gradient of concentration).

Next, we discuss the evolution of concentration in detail. It has to be noted,
that in the case teq > t0 an equilibrium concentration ceq is reached. Micro-
scopically, this process can be explained as follows: The concentration in a
certain control volume is not changed while the local deposition is ongoing
and the local permeability ks is decreasing. The transport of the fine particle
fraction of the domain causes a sudden change of the concentration in the
transition zone. This sudden decrease of the concentration disappears as soon
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Length of domain L 20 m

Pressure at boundary x = 0 p̄0 6.38 kPa

Pressure at boundary x = L p̄L 0 Pa

Concentration at boundary x = 0 c̄ 0.1

Effective dynamic viscosity ηfR 1 mPa s

Initial porosity φ0 0.32

Initial intrinsic permeability ks0 8.57× 10−10 m2

calculation time T 1× 105 s

Table 1: Material properties and used boundary conditions

as the transition zone has passed the whole domain and arrived at the right
boundary. If the infiltration process is considered beyond the flow-through of
the transition zone, an equilibrium concentration setting is observed in the
whole domain. In particular, the chosen parameter k in the evolution equa-
tion of the volume exchange term, has an influence on the time-independent
equilibrium concentration. In Fig. 4 equilibrium concentrations of fines in
the suspension for different values of k are illustrated, whereas the remaining
simulation details are unchanged. It is observed that for sufficiently small
values of k (10−4 < k < 0.02) the concentration profile across the domain
shows an approximately linear behaviour. As a result, the concentration
change is constant between two time steps in the same location for small
k. The scatter plot of the concentration distribution can be represented by
a linear function. These resulting functions, describing the distribution of
concentration ceq in the domain are shown in Fig. 4 b). The conclusion is,
that as long as values of k are considered, which lead to a linear distribution
of equilibrium concentration, the results for different parameters of k can be
converted into each other. When a distribution of equilibrium concentration
is known for a certain factor kM , it is possible to derive the distribution of
concentration for another value of k. This means a master curve for the dis-
tribution of equilibrium concentration can be determined. Accordingly, the
transformation follows the equation

ceq

(x
L

)
= mM

k

kM

x

L
+ c̄. (27)

In Eq. (27), mM describes the slope of the concentration distribution, arising
when kM is used. The resulting concentration distribution is valid for one
value of k. c̄ is the previously mentioned boundary condition for the con-
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Figure 4: Distribution of the concentration ceq at equilibrium, left: calcu-
lated concentration distribution, right: fitted and transformed concentration
distribution

centration. Therefore, the graph for kM = 0.02 illustrates the master curve.
This leads to a slope of mM = −0.03415 and c̄ = 0.1. The resulting distribu-
tion of concentration using these values and Eq. (27) are shown in Fig. 4 as
solid lines. This fits very well with the calculated concentration gradients.

For larger values of k it is not sufficient to reduce the transformation of the
concentration distribution to a pure rotation. This results from the non-
linearity of the gradient of concentration.

Considering the results of the presented analyses, it is point out, that the
proposed model is well-suited for the simulation of a filter cake formation.
A filter cake is a localized layer of highly reduced permeability. For an
explanation of this term a 1-dim domain is divided into two parts. In the
left part of the domain the volume fraction of the solid skeleton is assumed
to be zero nsn = 0. The right part is represented by a four-phase mixture
in accordance to the parameters used in the analysis. If an IBVP is solved
with the previously described boundary conditions, two different types of
filter cakes might occur. First, it is possible that an external filter cake is
formed, cf. Fig. 5. Thereby the constriction sizes of the pore channels are
smaller than the average diameter of the fluidized fines. Hence, the fines
are not able to penetrate significantly in the second part of the domain.
Instead the fines are deposited on the border in between the both parts.
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As a result, more particles accumulate at the interface, so that a layer with
reduced permeability can be observed.

Figure 5: Formation of a filter cake. Left: external filter cake; right: internal
filter cake

In contrast, the formation of an internal filter cake occurs cf. Fig. 5, if fines
penetrate over a certain distance into the second part of the domain. The
infiltration causes a local increase in the flow rate q and a reduction of the
permeability ks. Hence the production term n̂a is increased locally. As a
result, a high amount of fines is infiltrated locally. It has to be pointed out,
that the proposed model is applicable to cases of internal filter cakes only.
To capture the occurrence of an external filter cake geometrical consideration
concerning the analysis of the constriction size distribution are necessary.

5 Conclusion

In the preceding sections the governing differential equations of internal ero-
sion processes of cohesionless soils were formulated based on the mass and
momentum balances of the present phases. In addition material incompress-
ibility was assumed. Within this framework, a four-phase model for infiltra-
tion processes was presented.

Furthermore, the IBVP was extended by a production term to simulate the
infiltration of fines from the suspension to the solid fraction. The form of the
introduced production term n̂a can be understood as a constitutive formu-
lation. The production term is thermodynamically consistent and contains
a material parameter k, which has to be validated by physical experiments.
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However, for a given combination of a filter material and a suspension, the
appropriate values of k have to be determined by conducting infiltration
experiments. For small values of k (representing linear profiles of the equi-
librium concentration ceq) a master curve was found, which could be used
to avoid experimental set-ups for respective soil materials. In particular, for
larger values of k, resulting in a nonlinear concentration distribution, further
theoretical, numerical and experimental investigations are necessary. In the
future, additional investigations will be carried out with the aim to take the
pore network into account and to describe its effects on the rearrangement
phenomena in porous media. This will lead to an even more sophisticated
description of the microscopical infiltration process.
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